Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
J Cell Mol Med ; 28(8): e18260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520216

RESUMO

Ovarian cancer (OC) is a deadly disease with limited treatment options and poor overall survival rates. This study aimed to investigate the role of histone modification-related genes in predicting the prognosis of OC patients. Transcriptome data from multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were collected. Gene set enrichment analysis was used to identify enriched gene sets in the histone modification pathway. Differentially expressed genes (DEGs) between histone modification-high and histone modification-low groups were identified using Lasso regression. A prognostic model was constructed using five selected prognostic genes from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets in the histone modification pathway and identified five prognostic genes associated with OC prognosis. The constructed risk score model based on histone modification-related genes was correlated with immune infiltration of T cells and M1 macrophages. Mutations are more prevalent in the high-risk group compared to the low-risk group. Several drugs were screened against the model genes. Through in vitro experiments, we confirmed the expression patterns of the model genes. LBX2 facilitates the proliferation of OC. Histone modification-related genes have the potential to serve as biomarkers for predicting OC prognosis. Targeting these genes may lead to the development of more effective therapies for OC. Additionally, LBX2 represents a novel cell proliferation promoter in OC carcinogenesis.


Assuntos
Código das Histonas , Neoplasias Ovarianas , Feminino , Humanos , Carcinogênese , Proliferação de Células/genética , Código das Histonas/genética , Neoplasias Ovarianas/genética , Prognóstico
2.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540331

RESUMO

Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.


Assuntos
Histonas , Esquizofrenia , Humanos , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Esquizofrenia/metabolismo , Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Metilação
3.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237857

RESUMO

Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.


Assuntos
Epigênese Genética , Histonas , Animais , Histonas/metabolismo , Código das Histonas/genética , Telômero/genética , Telômero/metabolismo , Carcinogênese/genética , Mamíferos/genética
4.
Sci Rep ; 13(1): 15596, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730913

RESUMO

Allele specific expression (ASE) is widespread in many species including cows. Therefore, regulatory regions which control gene expression should show cis-regulatory variation which mirrors this differential expression within the animal. ChIP-seq peaks for histone modifications and transcription factors measure activity at functional regions and the height of some peaks have been shown to correlate across tissues with the expression of particular genes, suggesting these peaks are putative regulatory regions. In this study we identified ASE in the bovine genome in multiple tissues and investigated whether ChIP-seq peaks for four histone modifications and the transcription factor CTCF show allele specific binding (ASB) differences in the same tissues. We then investigate whether peak height and gene expression, which correlates across tissues, also correlates within the animal by investigating whether the direction of ASB in putative regulatory regions, mirrors that of the ASE in the genes they are putatively regulating. We found that ASE and ASB were widespread in the bovine genome but vary in extent between tissues. However, even when the height of a peak was positively correlated across tissues with expression of an exon, ASE of the exon and ASB of the peak were in the same direction only half the time. A likely explanation for this finding is that the correlations between peak height and exon expression do not indicate that the height of the peak causes the extent of exon expression, at least in some cases.


Assuntos
Código das Histonas , Fatores de Transcrição , Feminino , Animais , Bovinos , Código das Histonas/genética , Fatores de Transcrição/genética , Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Éxons/genética
5.
Oncology ; 101(9): 591-608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549026

RESUMO

INTRODUCTION: SOX2 plays a crucial role in tumor development, cancer stem cell maintenance, and cancer progression. Mechanisms of SOX2 gene regulation in human breast and prostate cancers are not established yet. METHODS: SOX2 expression in prostate and breast cancer tissues and cell lines was determined by qRT-PCR, Western blot, and immunochemistry, followed by the investigation of pro-tumorigenic properties like cell proliferation, migration, and apoptosis by gene knockdown and treatment with epigenetic modulators and ChIP. RESULTS: Prostate and breast cancer tissues showed very high expression of SOX2. All cancer cell lines DU145 and PC3 (prostate) and MCF7 and MDA-MB-231 (breast) exhibited high expression of SOX2. Inhibition of SOX2 drastically decreased cell proliferation and migration. Epigenetic modulators enhanced SOX2 gene expression in both cancer types. DNA methylation pattern in SOX2 promoter could not be appreciably counted for SOX2 overexpression. Activation of SOX2 gene promoter was due to very high deposition of H3K4me3 and H3K9acS10p and drastic decrease of H3K9me3 and H3K27me3. CONCLUSION: Histone modification is crucial for the overexpression of SOX2 during tumor development and cancer progression. These findings show the avenue of co-targeting SOX2 and its active epigenetic modifier enzymes to effectively treat aggressive prostate and breast cancers.


Assuntos
Neoplasias da Mama , Masculino , Humanos , Neoplasias da Mama/patologia , Código das Histonas/genética , Próstata/patologia , Linhagem Celular Tumoral , Apoptose/genética , Metilação de DNA , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
6.
Front Immunol ; 14: 1206406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398657

RESUMO

Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.


Assuntos
Epigênese Genética , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/genética , Metilação de DNA , Código das Histonas/genética , Autofagia/genética
7.
Bioessays ; 45(10): e2200239, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350339

RESUMO

The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Humanos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Código das Histonas/genética , Neoplasias/genética
8.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37310913

RESUMO

Human endometrial stromal cells (hESCs) undergo a differentiation process with dramatic changes in cell functions during the menstrual cycle, which is called decidualization. This is an important event for implantation of the embryo and successful pregnancy. Defective decidualization can cause implantation failure, miscarriage, and unexplained infertility. A number of genes are upregulated or downregulated during decidualization. Recent studies have shown that epigenetic mechanisms are involved in the regulation of decidualization-related genes and that histone modifications occur throughout the genome during decidualization. The present review focuses on the involvement of genome-wide histone modifications in dramatic changes in gene expression during decidualization. The main histone modifications are the increases of H3K27ac and H3K4me3, which activate transcription. C/EBPß works as a pioneer factor throughout the genome by recruiting p300. This is the main cause of the genome-wide acetylation of H3K27 during decidualization. Histone modifications were observed in both the proximal promoter and distal enhancer regions. Genome editing experiments show that the distal regions have transcriptional activities, which suggests that decidualization induces the interactions between proximal promoter and distal enhancer regions. Taken together, these findings show that gene regulation during decidualization is closely associated with genome-wide changes of histone modifications. This review provides new insights regarding the cases of implantation failure in terms of decidualization insufficiency owing to epigenetic dysregulation, and may lead to novel treatment options for women with implantation failure.


Assuntos
Decídua , Endométrio , Gravidez , Humanos , Feminino , Endométrio/metabolismo , Decídua/metabolismo , Código das Histonas/genética , Expressão Gênica , Células Estromais/metabolismo
9.
Fungal Genet Biol ; 167: 103800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146898

RESUMO

In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.


Assuntos
Aspergillus nidulans , Histonas , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Processamento de Proteína Pós-Traducional , Heterocromatina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo
10.
BMC Plant Biol ; 23(1): 248, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170202

RESUMO

BACKGROUND: Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes (HMs) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. RESULTS: In this study, we identified 102 AtHMs, 280 BnaHMs, 251 BcHMs, 251 BjHMs, 144 BnHMs, 155 BoHMs, 137 BrHMs, 122 CrHMs, and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs, indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46, BnaHDT10, and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance (BnaPRMT11, BnaSDG46, BnaSDG10, BnaJMJ58, BnaHDT10, and BnaHDA1) were identified. CONCLUSIONS: Taken together, these findings help clarify the biological roles of Brassicaceae HMs. The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Filogenia , Código das Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
11.
J Mol Biol ; 435(6): 167993, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736887

RESUMO

Heterogeneous nuclear ribonucleoprotein K (HNRNPK, hnRNP K), a multifunctional RNA/DNA binding protein, mainly regulates transcription, translation and RNA splicing, and then plays oncogenic roles in many cancers. However, the related mechanisms remain largely unknown. Here, we found that HNRNPK can partially epigenetically regulate cancer cell proliferation via increasing transcription and exon 4-inclusion of SPIN1, an important oncogenic histone code reader. This exon 4 skipping event of SPIN1 generates a long non-coding RNA, followed by the downregulation of SPIN1 protein. SPIN1 is one of the most significantly co-expressed genes of HNRNPK in thirteen TCGA cancers. Our further studies revealed HNRNPK knockdown significantly inhibited cell growth and cell cycle progression in oral squamous cell carcinoma (OSCC) cells and promoted cell apoptosis. Overexpression of SPIN1 was able to partially rescue the growth inhibition triggered by HNRNPK knockdown. Moreover, CCND1 (Cyclin D1), a key cell cycle regulator and oncogene, epigenetically up-regulated by SPIN1, was also positively regulated by HNRNPK. In addition, we discovered that HNRNPK promoted SPIN1 exon 4 inclusion by interacting with an intronic splicing enhancer in intron 4. Collectively, our study suggests a novel epigenetic regulatory pathway of HNRNPK in OSCC, mediated by controlling the transcription activity and alternative splicing of SPIN1 gene.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Ciclo Celular , Epigênese Genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Ciclo Celular/genética , Proliferação de Células/genética , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Código das Histonas/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas de Ciclo Celular/genética
12.
Cell Death Dis ; 14(2): 112, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774341

RESUMO

Sepsis is a life-threatening disorder disease defined as infection-induced dysregulated immune responses and multiple organ dysfunction. The imbalance between hyperinflammation and immunosuppression is a crucial feature of sepsis immunity. Epigenetic modifications, including histone modifications, DNA methylation, chromatin remodeling, and non-coding RNA, play essential roles in regulating sepsis immunity through epi-information independent of the DNA sequence. In recent years, the mechanisms of histone modification in sepsis have received increasing attention, with ongoing discoveries of novel types of histone modifications. Due to the capacity for prolonged effects on immune cells, histone modifications can induce immune cell reprogramming and participate in the long-term immunosuppressed state of sepsis. Herein, we systematically review current mechanisms of histone modifications involved in the regulation of sepsis, summarize their role in sepsis from an immune perspective and provide potential therapeutic opportunities targeting histone modifications in sepsis treatment.


Assuntos
Histonas , Sepse , Humanos , Histonas/metabolismo , Código das Histonas/genética , Epigênese Genética , Sepse/genética , Metilação de DNA
13.
Sci China Life Sci ; 66(6): 1264-1279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808292

RESUMO

Histone modifications play crucial roles in the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury. However, a genome-wide map of histone modifications and the underlying epigenetic signatures in myocardial I/R injury have not been established. Here, we integrated transcriptome and epigenome of histone modifications to characterize epigenetic signatures after I/R injury. Disease-specific histone mark alterations were mainly found in H3K27me3-, H3K27ac-, and H3K4me1-marked regions 24 and 48 h after I/R. Genes differentially modified by H3K27ac, H3K4me1 and H3K27me3 were involved in immune response, heart conduction or contraction, cytoskeleton, and angiogenesis. H3K27me3 and its methyltransferase polycomb repressor complex 2 (PRC2) were upregulated in myocardial tissues after I/R. Upon selective inhibition of EZH2 (the catalytic core of PRC2), the mice manifest improved cardiac function, enhanced angiogenesis, and reduced fibrosis. Further investigations confirmed that EZH2 inhibition regulated H3K27me3 modification of multiple pro-angiogenic genes and ultimately enhanced angiogenic properties in vivo and in vitro. This study delineates a landscape of histone modifications in myocardial I/R injury, and identifies H3K27me3 as a key epigenetic modifier in I/R process. The inhibition of H3K27me3 and its methyltransferase might be a potential strategy for myocardial I/R injury intervention.


Assuntos
Proteínas de Drosophila , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Código das Histonas/genética , Traumatismo por Reperfusão Miocárdica/genética , Proteínas do Grupo Polycomb
14.
Nat Biotechnol ; 41(6): 813-823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36593403

RESUMO

Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells.


Assuntos
Código das Histonas , Histonas , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional/genética , Genoma
15.
Artigo em Inglês | MEDLINE | ID: mdl-34971538

RESUMO

Predicting differential gene expression (DGE) from Histone modifications (HM) signal is crucial to understand how HM controls cell functional heterogeneity through influencing differential gene regulation. Most existing prediction methods use fixed-length bins to represent HM signals and transmit these bins into a single machine learning model to predict differential expression genes of single cell type or cell type pair. However, the inappropriate bin length may cause the splitting of the important HM segment and lead to information loss. Furthermore, the bias of single learning model may limit the prediction accuracy. Considering these problems, in this paper, we proposes an Ensemble deep neural networks framework for predicting Differential Gene Expression (EnDGE). EnDGE employs different feature extractors on input HM signal data with different bin lengths and fuses the feature vectors for DGE prediction. Ensemble multiple learning models with different HM signal cutting strategies helps to keep the integrity and consistency of genetic information in each signal segment, and offset the bias of individual models. Besides the popular feature extractors, we also propose a new Residual Network based model with higher prediction accuracy to increase the diversity of feature extractors. Experiments on the real datasets from the Roadmap Epigenome Project (REMC) show that for all cell type pairs, EnDGE significantly outperforms the state-of-the-art baselines for differential gene expression prediction.


Assuntos
Código das Histonas , Processamento de Proteína Pós-Traducional , Código das Histonas/genética , Redes Neurais de Computação , Regulação da Expressão Gênica , Expressão Gênica
16.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379668

RESUMO

We recently adapted a CUT&RUN protocol for genome-wide profiling of chromatin modifications in the human malaria parasite Plasmodium Using the step-by-step protocol described below, we were able to generate high-quality profiles of multiple histone modifications using only a small fraction of the cells required for ChIP-seq. Using antibodies against two commonly profiled histone modifications, H3K4me3 and H3K9me3, we show here that CUT&RUN profiling is highly reproducible and closely recapitulates previously published ChIP-seq-based abundance profiles of histone marks. Finally, we show that CUT&RUN requires substantially lower sequencing coverage for accurate profiling compared with ChIP-seq.


Assuntos
Código das Histonas , Plasmodium falciparum , Humanos , Código das Histonas/genética , Imunoprecipitação da Cromatina/métodos , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional , Sequenciamento de Cromatina por Imunoprecipitação
17.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302651

RESUMO

Obesity and elevated circulating lipids may impair metabolism by disrupting the molecular circadian clock. We tested the hypothesis that lipid overload may interact with the circadian clock and alter the rhythmicity of gene expression through epigenomic mechanisms in skeletal muscle. Palmitate reprogrammed the circadian transcriptome in myotubes without altering the rhythmic mRNA expression of core clock genes. Genes with enhanced cycling in response to palmitate were associated with post-translational modification of histones. The cycling of histone 3 lysine 27 acetylation (H3K27ac), a marker of active gene enhancers, was modified by palmitate treatment. Chromatin immunoprecipitation and sequencing confirmed that palmitate exposure altered the cycling of DNA regions associated with H3K27ac. The overlap between mRNA and DNA regions associated with H3K27ac and the pharmacological inhibition of histone acetyltransferases revealed novel cycling genes associated with lipid exposure of primary human myotubes. Palmitate exposure disrupts transcriptomic rhythmicity and modifies enhancers through changes in histone H3K27 acetylation in a circadian manner. Thus, histone acetylation is responsive to lipid overload and may redirect the circadian chromatin landscape, leading to the reprogramming of circadian genes and pathways involved in lipid biosynthesis in skeletal muscle.


Assuntos
Histonas , Transcriptoma , Humanos , Histonas/metabolismo , Transcriptoma/genética , Palmitatos/farmacologia , Palmitatos/metabolismo , Código das Histonas/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Fibras Musculares Esqueléticas/metabolismo , DNA/metabolismo
18.
Nat Commun ; 13(1): 7939, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566265

RESUMO

The interplay between histone modifications and DNA methylation drives the establishment and maintenance of the cellular epigenomic landscape, but it remains challenging to investigate the complex relationship between these epigenetic marks across the genome. Here we describe a nanopore-sequencing-based-method, nanoHiMe-seq, for interrogating the genome-wide localization of histone modifications and DNA methylation from single DNA molecules. nanoHiMe-seq leverages a nonspecific methyltransferase to exogenously label adenine bases proximal to antibody-targeted modified nucleosomes in situ. The labelled adenines and the endogenous methylated CpG sites are simultaneously detected on individual nanopore reads using a hidden Markov model, which is implemented in the nanoHiMe software package. We demonstrate the utility, robustness and sensitivity of nanoHiMe-seq by jointly profiling DNA methylation and histone modifications at low coverage depths, concurrently determining phased patterns of DNA methylation and histone modifications, and probing the intrinsic connectivity between these epigenetic marks across the genome.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Metilação de DNA/genética , Código das Histonas/genética , Análise de Sequência de DNA/métodos , DNA/genética , Epigênese Genética
19.
Nat Commun ; 13(1): 6678, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335101

RESUMO

The quantitative characterization of the transcriptional control by histone modifications has been challenged by many computational studies, but most of them only focus on narrow and linear genomic regions around promoters, leaving a room for improvement. We present Chromoformer, a transformer-based, three-dimensional chromatin conformation-aware deep learning architecture that achieves the state-of-the-art performance in the quantitative deciphering of the histone codes in gene regulation. The core essence of Chromoformer architecture lies in the three variants of attention operation, each specialized to model individual hierarchy of transcriptional regulation involving from core promoters to distal elements in contact with promoters through three-dimensional chromatin interactions. In-depth interpretation of Chromoformer reveals that it adaptively utilizes the long-range dependencies between histone modifications associated with transcription initiation and elongation. We also show that the quantitative kinetics of transcription factories and Polycomb group bodies can be captured by Chromoformer. Together, our study highlights the great advantage of attention-based deep modeling of complex interactions in epigenomes.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Código das Histonas/genética , Regiões Promotoras Genéticas/genética , Genômica
20.
Cells ; 11(20)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291079

RESUMO

Background: Periodontitis is a chronic inflammatory disease involving an interplay between bacteria, inflammation, host response genes, and environmental factors. The manifestation of epigenetic factors during periodontitis pathogenesis and periodontal inflammation is still not well understood, with limited reviews on histone modification with periodontitis management. This scoping review aims to evaluate current evidence of global and specific DNA methylation and histone modification in periodontitis and discuss the gaps and implications for future research and clinical practice. Methods: A scoping literature search of three electronic databases was performed in SCOPUS, MEDLINE (PubMed) and EMBASE. As epigenetics in periodontitis is an emerging research field, a scoping review was conducted to identify the extent of studies available and describe the overall context and applicability of these results. Results: Overall, 30 studies were evaluated, and the findings confirmed that epigenetic changes in periodontitis comprise specific modifications to DNA methylation patterns and histone proteins modification, which can either dampen or promote the inflammatory response to bacterial challenge. Conclusions: The plasticity of epigenetic modifications has implications for the future development of targeted epi-drugs and diagnostic tools in periodontitis. Such advances could be invaluable for the early detection and monitoring of susceptible individuals.


Assuntos
Metilação de DNA , Periodontite , Humanos , Metilação de DNA/genética , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Periodontite/genética , Periodontite/metabolismo , Inflamação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...